at this temperature. Table II gives a comparison of the average data.

Viscosity values for air for intermediate temperatures were calculated by Sutherland's equation (9).

The relative viscosities of the vapors with respect to air were calculated by means of Equation 19. The absolute viscosities of the vapors were then calculated using the viscosity values of air determined by means of the Sutherland equation.

EXPERIMENTAL DATA

Experimental vapor viscosity data for the 1-propanolwater system were determined at 110° , 130° , and 150° C. and for the *n*-octane-toluene system at 130° and 150° C. (Table III).

ACKNOWLEDGMENT

The authors wish to express their sincere appreciation to the National Science Foundation for its aid in carrying out this and related investigations.

LITERATURE CITED

- Adam, N. K., "Physics and Chemistry of Surface," 3rd ed., Oxford University Press, London, 1944.
- (2) Cottrell, F. G., J. Am. Chem. Soc. 41, 721 (1919).
- (3) Ferguson, A., Kennedy, S. J., Proc. Phys. Soc. 44, 511 (1932).
- (4) Hilsenrath, J., others, Natl. Bur. Standards, Circ. 564 (Nov. 1, 1955).
- (5) Jackson, W. M., J. Phys. Chem. 60, 789 (1956).
- (6) Myerson, A. L., Eicher, J. H., J. Am. Chem. Soc. 74, 2758 (1952).

Table I. Refractive Index of Material Used

- (7) Poiseuille, J. L. M., Compt. rend. 11, 961 (1840).
- (8) Ruches, W., Ann. Physik 4, 983 (1908).
 (9) Sutherland, W., Phil Mag. 36, 507 (1895).
- (9) Sutherland, W., Phil Mag. 30, 507 (1895). Received for review August 23, 1956. Accepted April 8, 1957.

Properties of Binary Mixtures as a

Function of Composition

T. DAVID LING¹ and MATTHEW VAN WINKLE University of Texas, Austin, Tex.

Data on physical properties of mixtures as a function of composition and temperature are valuable in correlating other properties and in analytical studies. In this and subsequent investigations an attempt was made to develop experimental data for a number of systems on which generalized correlations could be developed relating composition and the property evaluated based on the properties of the pure components. Thus, eight binary systems having a rather wide range of properties (particularly interfacial tension) and in most cases, representing nonideal liquid mixtures were studied. The systems were: 1-propanol-water; toluene-n-octane; water-1-butanol; acetone-1-butanol: benzene-2-chloroethanol: carbon tetrachloride-1-propanol; ethyl alcohol-1,4-dioxane; and methanol-1,4-dioxane. The properties determined were: refractive index vs. composition, liquid density vs. composition and temperature, interfacial tension at the boiling point and at 30°C, as a function of composition, liquid viscosity as a function of temperature and composition, and vapor viscosity as a function of temperature and composition. Because of the peculiar variation of interfacial tension and viscosity with composition at the boiling point, no general correlations have been developed. More data on both binary and ternary systems are necessary.

MATERIALS

All the chemicals used for this project except toluene and water were reagent grade chemicals. Nitration grade toluene was used. Water was purified by distillation in this laboratory to a maximum conductivity of 1.4×10^{-6} mho or less. The refractive index of the materials was measured and compared with the reported values in the literature. They are listed in Table I.

REFRACTIVE INDEX

Refractive index vs. composition data for each binary system were obtained in the following manner.

¹Present address, Convair, Fort Worth, Tex.

Materia1	Temp., °C.	Literature	Exptl.
Acetone	20.0 25.0	1.35911 (18) 1.35662 (18)	1.35860 1.35625
Benzene	20.0 25.0 30.0	1.5011 (9) 1.49790 (18) 1.49486 (18)	1.50116 1.49733 1.49459
1-Butanol	20.0 25.0 30.0	1.3970 (18) 1.3974 (18)	1.39919 1.39739 1.39538
Carbon tetrachloride	20.0	$\begin{array}{cccc} 1.4602 & (18) \\ 1.46026 & (18) \\ 1.46036 & (18) \\ 1.46023 & (18) \\ \end{array}$	1.46014
	25.0	1.45732 (18) 1.4576 (18)	1.45740
2-Chloroethanol	20.0 25.0	1.44208 (18)	1.44198 1.43977
1,4 Dioxane	20.0 25.0	1.4224 (9) 1.42025 (18) 1.4202 (18) 1.4202 (18) 1.4202 (18)	1.42223 1.41973
Ethyl alcohol	20.0 25.0	1.36139 (18) 1.3596 (18) 1.3595 (18) 1.359408 (18)	1.36132 1.35937
Methanol	15.0 20.0 25.0	1.33057 (<i>18</i>)	1.33065 1.32895 1.32707
n-Octane	20.0 25.0	1.39534 (18) 1.39530 (18) 1.39509 (18) 1.39505 (18)	1.39775 1.39564
1-Propanol	30.0 20.0 23.6 25.0 30.0	1. 3854 (9) 1. 3840 (<i>18</i>)	1.39303 1.38572 1.38452 1.38391 1.38183
Toluene	20.0 25.0 30.0	1.49682 (18) 1.49405 (18)	1.49680 1.49407 1.49134
Water	20.0 25.0 30.0	1.33300 (10) 1.33255 (14) 1.3320 (10)	1.33316 1.33277 1.33213

		Tab	le II. Refractive	Index of Binary Mixture	26		
1-Propano	1-Water	Toluene-	-n-Octane	Water-1-B	utanol	Acetone-	1-Butanol
Mole %		Mole %		Mole %		Mole %	
1-propanol	n ³⁰ D	toluene	$n_{\rm D}^{30}$	water	$n_{\rm D}^{30}$	acetone	n ³⁰ D
			At 30 °	C.			
0.00	1 33213	n	1.39303	n	1.39538	0	1.39739
2 79	1 34000	2.785	1.39470	6.165	1.39488	6.634	1.39520
3 37	1 34160	13.26	1.40138	10.59	1.39444	19.20	1.39063
5.06	1 34568	28.29	1.41206	16.48	1.39377	26.37	1.38810
7.96	1 35113	43.40	1.42438	21.45	1.39312	29.89	1.38679
10.68	1.35494	43.89	1.42484	24.04	1.39271	38.43	1.38346
15 52	1 36025	50.00	1.43035	27.41	1.39217	48.45	1.37943
20.12	1 36414	51 53	1.43176	36.58	1.39052	50.00	1.37882
25.12	1 36756	54 36	1.43437	39.98	1.38976	55.89	1.37650
33 15	1 37160	65 74	1.44611	40.47	1.38959	63.58	1.37333
46 22	1.37600	83 38	1 46719	Two liquid	phases	68.82	1.37114
50.00	1.37677	03.80	1 48170	98 72	1.33724	81.87	1.36500
50,00	1.37705	100.02	1 40134	99.50	1 33412	91.57	1 36041
54.30	1.37755	100.0	1.49104	100.00	1 33213	02 53	1 34007
72 10	1,37930			100.00	1.00210	92.00	1 35766
73.19	1.38000					100.0	1 35625
81.03	1 39150					100.0	1.55025
03.74	1.36139						
93.31	1.38100						
90.36	1.30103						
100.0	1.38185						
Benzene-H	Ithylene	Carbon Tet	rachloride-				
Chloroh	ydrin	1-Pro	opanol	Ethyl Alcohol-1	l,4-Dioxane	Methanol-1	,4-Dioxane
Mole %		Mole %		Mole %		Mole %	
benzene	$n_{\rm D}^{25}$	CCl4	$n_{\rm D}^{25}$	ethyl alcohol	n ²⁵ D	methano1	n25 D
			At 25°	с.			
0.00	1.43977	0.00	1.38368	0.00	1.41973	0.00	1.41973
1.40	1.44088	4.91	1.38855	3,195	1.41837	3.367	1.41828
3.71	1.44254	14.92	1.34781	5.81	1.41729	8.77	1.41587
7.27	1.44516	20.34	1.40261	12.09	1.41455	16.50	1.41217
14.17	1.44990	33.55	1.41331	23.02	1.40961	29.45	1.40513
18 35	1 45268	43 30	1 42067	33.01	1 40460	38 31	1.30053
27 15	1 45821	50 33	1 42567	41 64	1 40013	51 78	1 38950
37.23	1 46438	60.70	1 43270	41.04 A7 AA	1 30600	56.27	1 38560
42 91	1 46773	69.04	1 43818	57 54	1 30007	66.09	1 37629
50.00	1 47163	80.28	1 44525	65 44	1 38504	72.26	1 36062
51.00	1 47222	95.64	1 44946	73 04	1 39016	80.37	1 35056
60.01	1.47200	03.04	1 45227	20.03	1.38010	85.30	1.35930
60.01	1.47700	91,04	1.4344/	02.03 97 16	1.3/4423	03.39	1 24020
77 62	1.48200	93.23	1.45420	03 44	1.3/041	94.90	1 22601
77.03	1.40399	98.01	1.43399	90,44	1,30307	93.41	1 33140
00./1	1.49130	100.0	1.43/40	90.42 09 53	1.30249	97.80	1,33142
93.40	1,493/3			98.33	1,30003	99.00	1.32905
9/120	1.493/4			100.0	1.22321	100.0	1.32/07
100.0	1.49/33						

After the weighed mixture was prepared, a magnetic stirrer was used to mix the two components of each of the binary systems, to obtain a uniform composition of the mixture. If the mixing were accomplished by shaking, it might be possible for an indeterminable amount of the system of different composition to adhere to the ground joint of the weighing bottle. A small magnet was sealed in a glass tube and placed in a dry 30-ml. weighing bottle which was then weighed. A predetermined amount of the less volatile component of the system was measured into the weighing bottle with a pipet and the weighing bottle with its contents was again weighed before addition of a calculated amount of the more volatile component to the system. The weight of the bottle with both components of the system was then obtained. As soon as the last weighing was completed, the weighing bottle containing the mixture was placed on the magnetic stirrer for thorough mixing of the system.

The refractive index of the mixture was then measured at 25° or 30° C. in a Bausch & Lomb precision refractometer equipped with a sodium arc lamp. The precision of measurement is 0.00003 unit of refractive index. The compositions of the mixtures were calculated to 0.01 mole % of the more volatile component.

Thirteen to 20 refractive index vs. composition points were obtained for each system covering the single-liquidphase composition range. A smooth curve was drawn through the experimental data points so that random error could be detected. The refractive index-composition data are reported in Table II.

Discussion of Refractive Index-Composition Data. The refractive index-composition data for four of the eight systems reported are available in the literature. Amis, Choppin, and Padgitt (1) give equations to calculate n_1 for the methanol-1,4-dioxane system. Values of n_D^{**} for ethyl alcohol-1,4-dioxane are furnished by Hopkins, Yerger, and Lynch (8); and those for the acetone-1-butanol system by Brunjes and Furnas (4). Data for the carbon tetrachloride-1-propanol system n_D^{20} are listed by Carley and Bertelsen (6). The data resulting from this investigation agree fairly closely with the refractive index data for the dioxane systems reported in the literature. Those for carbon tetrachloride-1-propanol system have not been compared because the temperature of measurement was different. However, the end point values agree with the established values in the literature (18). The refractive index data for the acetone-1-butanol binary system obtained in this laboratory are consistently lower than those reported in the literature. The extent of variation in terms of temperature is approximately 2°C. Random data points were rechecked and the temperature-calibration was rerun. The same results were obtained.

LIQUID DENSITY

Apparatus. The apparatus used for the liquid density determination was the following: A weighing device utilizing the same principles as a Westphal specific gravity balance consisted of a Chainomatic specific gravity balance set above a temperature bath. A borosilicate glass plummet, 9.255 ml. in volume, was employed at 26.4 °C. to displace liquid contained in a 38×200 mm. borosilicate glass test tube clamped in the temperature bath directly below the hole in the base of the balance case. The temperature of the bath was controlled by a Bronwill constant temperature circulator to 0.1 °C. Distilled water was used in the bath for temperatures of 30° and 55 °C. while water-white mineral oil was used for temperatures of 75 °C. and higher.

A Bausch & Lomb precision refractometer was used to determine the refractive index of the samples at 30° or 25° C. in order to obtain their composition from calibration charts.

Experimental Procedure. The liquid density of each of the eight binary systems was determined for several compositions at 30° , 55° , 75° , and 95° C.

A sample of the solution was placed in a 38×200 mm. test tube to a level about 5 cm. from the top; a stopper wrapped with aluminum foil was used to plug the opening of the test tube. The tube and its contents were placed in the temperature bath for sufficient time to allow the temperature to become constant before the measurement of the density of the sample. After removal of the stopper, the borosilicate glass plummet was immediately placed in the liquid sample. Care was taken to ensure that the plummet was freely suspended in the liquid by a fine Nichrome wire, which connected the plummet to the arm of the balance. Sufficient time was allowed for the plummet and liquid to reach thermal equilibrium. The weight lost by the plummet and the immersed portion of the wire in the liquid was divided by the total immersed volume to give the density of the sample at the bath temperature.

Evaporation of the liquid samples at higher temperatures limited measurement of liquid densities by this method. Densities for several samples could not be determined at temperatures of 75° to 95° C.

Discussion of Liquid Density Data. Data on liquid density expressed as a function of liquid composition and temperatures of 30° , 55° , 75° , and 95° C. for each system are presented in Table III. The estimated precision in the liquid density determination was 0.05%.

It was observed that the mixture densities of some of the systems studied are additive volumetrically.

The 1-propanol-water system is nonadditive volumetrically. The liquid mixture becomes less nonideal as the temperature approaches the boiling point.

The density of the toluene-n-octane mixture is additive on a volume basis. This relation still holds fairly well at temperatures near the boiling point.

For the water-1-butanol system the density is linear with liquid volumetric composition up to 14 mole % or more water at temperatures close to the boiling point of the solution.

The liquid density of the acetone-1-butanol mixture is volumeadditive at high acetone concentrations.

The liquid density for the benzene-2-chloroethanol mixture is fairly close to being volume-additive.

The liquid density for the carbon tetrachloride-1-propanol mixture is fairly close to being volume-additive.

The liquid density for the ethyl alcohol-1,4-dioxane mixture is fairly close to being volume-additive.

The liquid density for methanol-1,4-dioxane system is linear to volume composition up to 70 mole % of methanol in the liquid.

INTERFACIAL TENSION

Interfacial tension measurements were made on various liquid compositions of each of the eight binary systems at their respective atmospheric boiling points and in contact with their equilibrium vapors.

Table	ш.	Liquid	Density	1 75.	Compositio	n and	Tem	perature
-------	----	--------	---------	-------	------------	-------	-----	----------

		Densi	ity, Gram/M1.	
Compn., Mole 7	30°C.	55 °C.	75 °C.	95 °C.
	1-Propa	nol-Water		
1-Propanol				
0.00	0,9956	0.9857	0.9749	0.9619
2.45	0.9832	0.9721	0.9600	0.9471
7.60	0.9609	0.9453	0.9310	0.9162
50.80	0,8438	0.8252	0.8009	0.7890
79.70	0.8144	0.7928	0.7748	0.7536
100.00	0.7966	0.7761	0.7576	0.7394
	Toluen	-n-Octane		
Toluene				
0.00	0.6945	0.6743	0.6580	0.6427
26.34	0.7239	0.7138	0.6871	0.6709
41.84	0.7447	0.7243	0.7079	0.6907
82.82	0.8159	0.7942	0.7765	0.7595
86.37	0.8227	0.8016	0.7837	0,7660
85.80	0.8295	0.8076	0.7896	0,7727
94.17 100.00	0.8419	0.8196	0.8019	0.7844
Water	Water-1	-Butanol		
0,00	0.8020	0,7829	0.7670	0.7482
9.50	0,8091	0.7897	0.7718	0.7539
25.26	0.8177	0.7989	0.7822	0.7622
43.85	0.8348	0.8148	0.7978	0.7788
	(Two liqui	d phases)		
98.704	0.9870	0.9765	0.9654	0.9521
100.00	0,9956	0.9857	0.9749	0.9619
Acetone	Acetone	-1-Butanol		
			0 7670	0 7400
0.00	0.8020	0.7829	0.7670	0.7482
11.52	0.8012	0.7803	0.7625	
46.85	0.8010	0.7691	0.7499	
70.32	0,7873	0,7618		
79.74	0.7849	0.7583		
100.00	0.7797	0.7509		
Benzene	Benzene-Ethy	lene Chlorof	ydrin	
0.00	1 1012	1 1635	1 1405	1 1192
33.65	1.0635	1.0356	1.0138	0.9918
48.32	1,0137	0.9862	0.9647	0.5510
66.11	0.9605	0.9332	0.9111	
84.90	0.9076	0.8801	0.8583	
100.00	0,8685	0.8416	0.8192	
	Carbon Tetrach	loride-1-Pr	opanol	
CC14				
0.00	0.7966	0.7761	0.7576	0,7394
54.99	1,2359	1.2005	1.1678	
74.00	1.3983	1.3552	1.3198	
100.00	1.5725	1.5240	1.480/	
Ethyl Alcohol	Ethyl Alcol	no1-1,4-Dios	ane	
0.00	1 0225	0.0044	0.0718	0.0497
21.01	0.9854	0.9580	0.9355	0.9151
58.22	0.9098	0.8841	0.8641	
70.56	0.8736	0.8485	0.8292	
96.53	0.7922	0,7699	0.7518	
100.00	0.7805	0.7587	0.7410	
Methanol	Methanol-	-1,4-Dioxan	•	
0.00	1.0225	0,9944	0.9718	0.9487
22.50	0.9943	0.9676	0.9466	
41.15	0.9648	0.9386	0.9187	
66.20	0.9033	0.8824		
92,30	0.8183	0.7947		
100100	V./010	V./ J.J.T		

	Table IV. İı	nterfacial Te	nsion at Normal Be	oiling Point and 30 $^\circ$ C.		
Wa	ater-1-Butanol			A	cetone-1-Butanol	
Mole % water	δ, dynes/cm.	t°C,		Mole % acetone	δ, dynes/cm.	t°C.
			At Boiling Point			
0.00	14.14	117.8		0,00	14.15	117.8
7.45	14.63	107.6		4.31	15.90	110.0
17.25	15.34	101.2		8.90	16.50	103.5
31.26	16.11	96.2		24.45	17.11	87.2
48.05	17.08	93.7		39.01 70.16	17.30	64.0
99.30	53 10	90.1		100.0	17.43	56 11
100.0	58.85	100.0		100.0	17.50	50,11
			At 30°C.			
0.00	23.75			0.00	23.75	
9.50	24.20			11.52	23.69	
25.26	24.19			23.07	23.60	
43.85	24.14			33.41	23.53	
100.0	71.18			46.85	23.26	
				70.32	22.63	
				79.74	22.22	
				100.0	22.01	
Benzen	e-2-Chloroethanol			Carbon 7	Fetrachloride-1-Propano	<u></u>
Mole % benzene	δ, dyn es /cm.	t°C.		Mole % CC14	δ, dynes/cm.	t ° C,
			At Boiling Point			
0.00	24.17	128.6		0.00	15.78	97.19
5.04	23,94	98.8		4.95	16.88	91.3
19.00	23.71	88.1		15.91	18.35	83.1
34.97	23.29	84.6		33.34	19.28	76.8
45.13	23.05	83.5		61.81	19.73	74.0
58.57	22.57	82.4		75.37	20.05	73.5
75.10	21.98	81.3		98.06	20.46	75.4
84.50	21.62	80.7		100.00	20.79	76.75
94.85	20.98	80.2				
100.00	19:00	50.1	4 ° -			
	22.42		At 30 C.		<u></u>	
0.00	38.48			0.00	22.89	
33.65	30.51			20.76	22.89	
48.32	29.03			51.30	23.35	
84.00	20.78			74.00	23.01	
100.00	27.57			100.00	25.57	
Trial A				 M		
Mole % ethyl alcohol	dvnes/cm	t°C.	-	Mole % methanol	δ dynes/cm.	t°C.
	of dynes, end				-, ujnes, em	
0.00	21 50	101 5	At Boiling Point	0.00	21 50	101 5
0.00	21.59	101.5		14.00	21.59	101.5
14.54	22.52	90.0		14,00	23,89	/4.2 60 F
45 15	22.03	81 7		43.05	24.72	68 1
64 07	18 07	79.6		51 40	23.10	67.8
74.01	18.33	79.0		62.31	21.34	67.2
87.95	17.27	78.2		84.37	19.64	65.6
100.00	16.47	78.35		92.38	18.82	65.1
10000				100.00	17.41	64.75
			At 30 °C.			
0.00	32,20			0.00	32.20	
21.01	30.20			22.50	31.65	
58.22	26.02			41.15	28.93	
70,56	24.15			66.20	25.98	
96.53	21.52			92.30	22.67	
100.00	21.48			100.00	21.69	

Equipment. It was necessary to develop a unique apparatus and procedure for this part of the investigation. The equipment and procedure are described completely elsewhere (11).

Results. Interfacial tension as a function of composition at the normal boiling point and at 30° C. for six of the binaries are reported in Table IV and plotted in Figures 1 through 3. Data on the other two systems have been reported (11).

The precision of measurement for the various systems is

estimated as follows: 0.5 dyne per cm. for the systems benzene-2-chloroethanol, ethyl alcohol-1,4-dioxane, and methanol-1,4-dioxane; 0.2 dyne per cm. for water-1-butanol, acetone-1-butanol, and carbon tetrachloride-1-propanol.

LIQUID VISCOSITIES

Kinematic viscosities of the eight binary mixtures were determined at several temperatures near the bubble points of the liquid mixtures at various compositions. Absolute viscosities were calculated and are reported.

Figure 1, Interfacial tension of water-1-butanol system and acetone-1-butanol system

The Cannon and Fenske (5) modified Ostwald viscometer method (2) was used to determine the liquid mixture kinematic viscosities. Kinematic viscosity is defined as the quotient of the absolute viscosity divided by the density of the material at the same temperature and is expressed as centistokes or stokes.

For the Cannon-Fenske viscometer, the following equation applies.

Kinematic viscosity, centistokes = Ct - B/t (1)

where

- C = viscometer constant
- t = observed efflux time, seconds
- B = viscometer coefficient

For viscometers for which the B/t term is 0.1% of the Ct term or less, the B/t term may be neglected.

Three ASTM No. 25 Cannon-Fenske modified Ostwald viscometers were used to determine the liquid viscosities in this investigation. Water was utilized as the calibration fluid for the viscometers.

The liquid viscosities for the eight binary systems were measured at 30°, 55°, 75°, and 95°C. The viscosity measurement for several samples was limited to only 30°, 55°, and 75°C. because of evaporation of the sample in the temperature bath.

The kinematic viscosity of water was calculated from the absolute viscosity and liquid density data in the literature. The viscometer constant was calculated as

$$C = \frac{V_k, \text{ centistokes}}{t, \text{ seconds}}$$
(2)

Figure 2. Interfacial tension of benzene-ethylene chlorohydrin system and carbon tetrachloride-propanol system

Kinematic Viscosity of Water					
Temp., °C.	η , Centipoise (10)	ρ, Gram/Cc. (10)	V _k , Centistoke		
30.0	0.8004	0,99567	0.80388		
55.0	0,5073	0.98573	0.51464		
75.0	0,3806	0.97489	0.39040		
95,0	0.2994	0.96192	0.31125		
	Average Visco	meter Constant, C			
	Viscometer	c	•		
G-3 0.003142					
	G-19	0.003955			
G-20 0.003550					

Discussion of Liquid Viscosity Data. Values of absolute viscosity are presented as a function of liquid composition and temperatures of 30° , 55° , 75° , and 95° C. in Table V. A precision of 0.2% was estimated in the measurement of liquid viscosity.

The graphically extrapolated values for liquid viscosity at the boiling points are also presented in Table VI. In the systems acetone-1-butanol; benzene-2-chloroethanol; ethyl alcohol-1,4-dioxane; and methanol-1,4-dioxane, the addition of the more volatile component to the less volatile component of the system at a constant temperature decreases the viscosity of the liquid mixture. For all systems, the higher the temperature, the lower is the liquid viscosity for the same liquid composition. Two major effects on liquid mixture viscosity at the boiling point are observed when the more volatile component is added to the less volatile component or mixtures of lower volatility.

Figure 3. Interfacial tension of ethyl alcohol-1,4-dioxane system and methanol-1,4-dioxane system

The addition of the more volatile component lowers the boiling temperature and because of the decrease in temperature, increases the viscosity. Also, in most cases, the addition of the more volatile component lowers the viscosity of the mixture because the lighter component is less viscous (exceptions: 1-propanol-water, toluene-n-octane).

Apparently, at low concentration of the more volatile component in the liquid mixture, the lowered boiling point effect overshadows the decrease in viscosity effect, Therefore, at the lower concentrations of the more volatile component, the boiling point viscosity increases as the concentration of the more volatile component is increased from zero. When the influence of the composition at a higher concentration of the more volatile component due to viscosity effect becomes more important than the boiling point lowering effect, the liquid viscosity at the boiling point starts to decrease. Thus, a maximum of the liquid viscosity at the boiling point may be noted from the data.

Normal Boiling Points of Binary Systems. The normal boiling point-composition data for most of the systems investigated are reported in the literature.

System	Reference
1-Propanol-water	(7)
Toluene-n-octane	(3)
Water-1-butanol	(17)
Benzene-ethylene chlorohydrin	(16)
Carbon tetrachloride-1-propanol	(6)
Ethyl alcohol-1,4-dioxane	(8)
Methanol-1,4-dioxane	(13)

Table V. L	iquid Viscos	ity as a Fund	tion of Temp	perature
	and	Composition	ı	
Linuid Commu		Viscosity,	Centipoises	
Mole %	30 ° C.	55°C.	75 °C.	95°C.
1-Propanol		1-Propa	no1-Water	
0,0	0,8004(20)	0.5073(20)	0.3806(20)	0.2994(20)
2,45	1.069	0.617	0.445	0.333
7,60			0.572	0.313
10.19	1.793	0.926	0.625	
22.31	2.346	1.127	0.740	
57.73 70.70	2.054	1.090	0.725	
100.0	1.728	1.032	0.693	
Taluana		Taluana	a Ostana	
0.0	0 4865(13)	0 3740(13)	0 3134(13)	0 2658(13)
26.34	0.470	0.375	0.302	0.255
41.84	0.464	0.362	0.297	0.252
82.82	0.485	0.373	0.309	0,266
88.80	0.498	0.378	0.316	0.270
94.17	0.508	0.384	0.322	0.274
100.00	0.520	0.398	0.330	0.280
Water		Water-	1-Butanol	
0.00	2,250	1,265	0.841	0.579
9,50	2.236	1.237	0.825	0.576
25.26	2.272	1.245	0.822	0.574
43.85	2.420	1.289	0.845	0.584
	(Two liquid	phase region	n)	
98.704	0.968	0.575	0.421	0.325
100.0	0.8004(20)	0.5073(20)	0.3806(20)	0.2994(20)
Acetone		Acetone-	1-Butanol	
0.00	2.250	1.265	0.841	0 579
11.52	1.535	0.932	0,655	0.482
23.07	1.127	0.722	0.529	
33.41	0.879	0.589	0.450	
46.85	0.642	0.455		
70.32	0.427	0.286		
79,74	0.368	0.320		
100.00	0.295	0.229		
Benzene		Benzene-2-C	hloroethanol	
0.0	2.624	1.472	1.018	0 748
33.65	1.315	0.822	0.615	0.740
48.32	1.008	0.657	0.510	
66.11	0.771	0,530	0.416	
84.90	0.613	0.436	0.355	
100.00	0.562	0.410	0.333	
CC1.	Carb	on Tetrachlo	ride-1-Propa	nol
0.0	1.728	1.011	0.681	
20,76	2.078	1,207	0.839	
31.36	1.650	0.970	0.683	
50.99	1.113	0.713	0.521	
74.00	0.947	0,553		
100.0	0.841	0.618	0.510	
Ethyl Alcohol		1.4 - D	ioxane	
0.0	1,096	0 759	0 507	0.480
21.01	0.984	0.677	0.522	0.709
58.22	0.825	0.566	0.414	
70.56	0.798	0.546	0,396	
96.53	0.927	0.612	0.450	
100.0	0.988	0.643	0.470	
Methanol		1.4 - D	lioxane	
0.00	1 004	0.759	0.507	0.490
22.50	0.877	0.616	0.397	0.469
41.15	0,733	0.521	-1107	
66.20	0.603	0.432		

0.382

0.370

92.30

100.0

0.520

0.509

Table VI.	Liquid Viscosity at Boiling P	oint		Table VI. (Cont.)	
Liquid Compn., Mole %	Boiling Point, C.	Viscosity, Centipoise	Liquid Compn., Mole %	Boiling Point, C.	Viscosity, Centipoise
1-Propanol	1-Propanol-Water		Benzene	Benzene-2-Chloroethanol	
0.00	100.00	0.284	(Cont.)	(Cont.)	
1.00	95.00	0.313	20.00	89.68	0.639
2.00	92.00	0.340	30.00	85.45	0.574
4.00	90.40	0.375	40.00	84.12	0.508
6.00	89.30	0.434	50.00	83,11	0.460
10.00	88.50	0.510	60.00	82.35	0,413
20.00	88.10	0.590	70.00	81.74	0.379
30.00	87.90	0.593	80.00	81.20	0.347
40.00	87.79	0.594	85.00	80.82	0.337
43.20	87.78	0.588	90.00	80.54	0.332
50.00	87.90	0.587	95.00	80.27	0.323
60.00	88.30	0.572	100.00	80.08	0.317
70.00	89.14	0.560			
80.00	90.50	0.539	CC14	CCl ₄ -1-Propanol	
85.00	91,50	0.524	0.0	97.19	0.445
90.00	92.80	0.507	5.0	91.65	0.580
96.00	95.00	0.483	10.0	87.46	0.697
100.00	97.19	0.445	15.0	84.07	0.793
			20.0	81.70	0.766
Toluene	Toluene-n-Octane		30.0	78.30	0.666
0,00.	125.665	0.210	40.0	76.34	0.592
2.50	123.43	0.212	50.0	75.07	0.528
5.00	122.50	0.212	60.0	74.27	0.471
10.00	121.20	0.212	70.0	73.69	0.453
15.00	119.92	0.2122	80.0	73.40	0.454
20.00	118.75	0.2124	85.0	73.54	0.459
25.00	117.68	0.2125	90.0	73.83	0.473
30.00	116.72	0.2125	95.0	74.20	0.490
40.00	115.16	0.2125	97.50	74.86	0.499
50.00	113.94	0.2145	100.0	76.75	0.487
60.00	112.97	0.2195			
70.00	112.10	0.2270	Ethyl Alcohol	Ethyl Alcohol-1,4-Dioxane	
80.00	111.30	0.2350	0.0	101.50	0.460
90.00	110.57	0.2410	5.0	96.87	0.465
95.00	110.25	0.2450	10.0	93.44	0.461
100.00	110.623	0.2475	15.0	90.64	0.456
			20.0	88.00	0.452
Water	Water-1-Butanol		30.0	84.24	0.438
0.0	117.8	0.388	40.0	82.42	0.417
5.0	110.15	0.450	50.0	81.11	0.397
10.0	105.92	0.480	60.0	80.11	0.377
15.0	102.68	0.506	70.0	79.28	0.365
50.0	100.15	0.527	80.0	78.62	0.368
30.0	96.45	0.562	85.0	78.36	0.383
40.0	94.64	0.584	90.0	78.18	0.399
50.0	93.45	0.614	95.0	78.11	0.426
98.0	93.00	0.349	97.5	78.18	0.436
99.0	94.05	0.320	100.0	78.35	0.441
99.5	96.60	0.303			
100.0	100.0	0.284	Methanol	Methanol-1,4-Dioxane	
A .	A . 1 1		0.00	101.50	0.460
Acetone	Acetone-1-Butanol		5.00	92.90	0.482
0.00	117.8	0.388	10.00	86.10	0.495
1.00	115.7	0.395	15.00	81.65	0.491
2.50	113,1	0.409	20.00	79.10	0.481
5.00	109.1	0.425	30.00	75.30	0.463
10.00	102.0	0.445	40.00	72.61	0.441
15.00	96.0	0.452	50.00	70.58	0.416
20.00	90.8	0.457	60.00	68.88	0.395
25.00	86.2	0.444	70.00	76.42	0.376
30.00	82.39	0.434	80.00	66.21	0.358
35.00	79.00	0.420	90.00	65.33	0.343
40.00	76.28	0.405	100.00	64.75	0,329
50.00	71.8	0.364			
60.00	67.96	0.329			
70.00	64.60	0.304	D (
80.00	01.02 Ep 70	0.2/9	Because of s	ome possible inconsistencies	s in some of
90.00	58.79	0.253	the data the nor	mal boiling point-composition	data for two
95.00	57.50	0,240	binarv systems	were determined by the authority	ors by means
100.00	56.11	0.420	of the Cottrell-W	ashburn-Read boiling point an	naratus (19).
Benzene	Benzene-2-Chioroethanol		Results for the	acetone_1_hutanol evetem at	presented in
				hope for the methanel 1 A di	Freedoment in
0.00	128.6	0.475	ladie vil and t	nose for the methanol-1,4-die	stem system
1.00	115.90	0.560	in Table VIII.		
2.50	108.31	0.605	The authors'	normal boiling point-composition	sition values
5.00	99.92	0.665	for the methanol-	-1,4-dioxane system are some	what different
10.00	93.00	0.685	from those of Pa	adgitt, Amis. and Hughes (13).	The values
15.00	89.70	U. 008	determined by t for this project.	he authors were used in the	calculations

Table VII. Boiling Point for	System Acetone-1-Butanol
Boiling Point.	, Liquid Compn.,
°C.	Mole % Acetone
117.8	0.0
98.73	12.22
88.03	23.65
80.01	33.25
71.52	50.30
67. 3 2	61.72
61.96	78.55
59.07	89.11
56.11	100.00
Table VIII. Normal Methanol–1,4-D	Boiling Point for Vioxane System
Liquid Compn.,	Boiling Point,
Mole % Methanol	°C.
0.00	101, 50
0.00 7.57	101.50 90.50
0.00 7.57 13.95	101.50 90.50 83.24
0.00 7.57 13.95 25.53	101.50 90.50 83.24 76.96
0.00 7.57 13.95 25.53 33.50	101.50 90.50 83.24 76.96 74.50
0.00 7.57 13.95 25.53 33.50 35.75	101.50 90.50 83.24 76.96 74.50 73.60
0.00 7.57 13.95 25.53 33.50 35.75 43.69	101.50 90.50 83.24 76.96 74.50 73.60 71.80
0.00 7.57 13.95 25.53 33.50 35.75 43.69 46.35	101.50 90.50 83.24 76.96 74.50 73.60 71.80 71.50
0.00 7.57 13.95 25.53 33.50 35.75 43.69 46.35 50.21	101.50 90.50 83.24 76.96 74.50 73.60 71.80 71.50 70.38
0.00 7.57 13.95 25.53 33.50 35.75 43.69 46.35 50.21 63.97	101.50 90.50 83.24 76.96 74.50 73.60 71.80 71.50 70.38 68.20
0.00 7.57 13.95 25.53 33.50 35.75 43.69 46.35 50.21 63.97 75.38	101.50 90.50 83.24 76.96 74.50 73.60 71.80 71.50 70.38 68.20 66.74
0.00 7.57 13.95 25.53 33.50 35.75 43.69 46.35 50.21 63.97 75.38 81.59 87.60	101.50 90.50 83.24 76.96 74.50 73.60 71.80 71.50 70.38 68.20 66.74 66.18
0.00 7.57 13.95 25.53 33.50 35.75 43.69 46.35 50.21 63.97 75.38 81.59 87.89	101.50 90.50 83.24 76.96 74.50 73.60 71.80 71.50 70.38 68.20 66.74 66.18 65.50

VAPOR VISCOSITY

Vapor viscosities of the binary mixtures at temperatures above the dew points were determined for various compositions. It was necessary to develop a special type of apparatus for this purpose. This viscometer and the procedure followed in determining the viscosities have been described (11).

Vapor viscosity-composition-temperature data are reported here on the following systems (Table IX): water-1-butanol: acetone-1-butanol: benzene-ethylene chlorohydrin; carbon tetrachloride-1-propanol; ethyl alcohol-1,4dioxane; and methanol-1,4-dioxane. Similar data are reported on the 1-propanol-water and toluene-n-octane systems (11).

Discussion of Vapor Viscosity. The vapor viscometer was designed to utilize Poiseuille's equation (15) and the apparatus was calibrated using air as a reference material. Average values of air viscosity reported by Myerson and Eicher (12) and Ling (11) were utilized. The viscosities were then calculated from the experimental data by means of the following equation (11):

$$\frac{\eta_g}{\eta_a} = \frac{\left[(p_{1i} - p_{1f})^2 - (p_{2i} - p_{2f})^2\right]_g t_g(\Delta p_2)_a}{\left[(p_{1i} - p_{1f})^2 - (p_{2i} - p_{2f})^2\right]_a t_g(\Delta p_2)_g} \tag{3}$$

From a consideration of possible experimental errors and the precision of the measurements, it is believed the viscosities were determined with a possible maximum deviation of 4%.

ACKNOWLEDGMENT

The authors wish to express their appreciation to the National Science Foundation for its aid in carrying out this and related investigations.

LITERATURE CITED

- (1) Amis, E. S., Choppin, A. R., Padgitt, F. L., J. Am. Chem. Soc. 64, 1207 (1942). m. Soc. Testing Materials, Philadelphia, Pa., Committee
- (2) Am. D-2, "ASTM Standards on Petroleum Products and Lubricants," 1953.
- (3) Berg, L., Popovac, D. O., Chem. Eng. Progr. 45, 683 (1949). (4) Brunjes, A. S., Furnas, C. C., Ind. Eng. Chem. 27, 396
- (1935). (5) Cannon, M. R., Fenske, M. R., Ind. Eng. Chem., Anal. Ed.
- 10, 297 (1938).

т	emperature and C	amposition	
Vapor Compn.	Vapor V	iscosity, Poises	× 10 ⁵
y ₁ , Mole %	110°C.	130°C.	150 [°] C.
Water		Water-1-Butanol	
0.00	8.91	9.22	9,47
9.50	9.03	9.34	9.57
25.26	9.25	9.58	9.87
43.85	9.60	9,99	10.33
98.704	12.55	13.24	13.86
100.00	12.81	13.53	14.25
Acetone	А	cetone-1-Butanol	
0.00	8.91	9.22	9.47
11.52	9.02	9.35	0.62
23.07	0 14	9.00	9.02
33.41	0.25	0.57	0.90
46.95	0.39	0.72	10.06
70.33	9.30	10.05	10.00
70.32	9.00	10.05	10.42
100.0	9.79	10.18	10.57
_			
Benzene	Benz	zene-2-Chloroetha	anol
0.00	12.38	12.84	13.31
33,65	11.63	12.06	12.49
48.32	11.34	11.74	12.16
66.11	11.01	11.40	11.78
84.90	10.68	11.04	11.42
100.00	10.45	10.79	11.15
CC14	Carbon	Tetrachloride-1-F	ropanol
0.00	10.42	10.83	11.24
20,76	11.44	11.84	12.21
31.36	11.88	12.27	12.65
50.99	12.55	12.95	13.37
74.00	13.09	13.55	14.01
100.0	13.58	14.10	14.63
Ethyl Alcohol	Ethyl	Alcohol-1,4-Dio	xane
0.00	17.01	17.56	18.1
21.01	16.21	16.80	17 20
59 22	14 54	14.07	15 40
70 56	12.96	14 29	14 71
06.52	12.00	12.64	13.09
100.0	11.96	12.39	12.83
-			
Methanol	Met	hanol-1,4-Dioxar	le
0	17.01	17.56	18.11
22.50	16.50	16.98	17.48
41.15	15.98	16.42	16.90
66.20	14.99	15.45	15.88
92,30	13.37	13,86	14.35
100.0	12.82	13.32	13.83

V.

~~~

....

.

(6) Carley, J. F., Bertilesen, III, L. W., Ind. Eng. Chem. 41, 2806 (1949).

- (7) Gadwa, T. W., "Rectification of Binary Mixtures," chemical engineering thesis, Massachusetts Institute of Technology, 1936.
- (8) Hopkins, R. N., Yerger, E. S., Lynch, C. C., J. Am. Chem. Soc. 61, 2460 (1939).
- (9) Kirk, R. E., Other, D. F., "Encyclopedia of Chemical Technology," Interscience Encyclopedia, New York, 1947-55.
- (10) Lange, N. A., Forker, G. M., Burington, R. S., "Handbook of Chemistry," 6th ed., Handbook Publishers, Sandusky, Ohio, 1952.
- (11) Ling, T. D., Van Winkle, M., Ind. Eng. Chem., Chem. Eng. Data Series 3, 82 (1958).
- (12) Myerson, A. L., Eicher, J. H., J. Am. Chem. Soc. 74, 2758 (1952).
- (13) Padgitt, F. L., Amis, E. S., Hughes, D. W., Ibid., 64, 1231 (1942).
- (14) Pesee, B., Evdokimoff, B., Gazz. chim. ital. 70, 716 (1940).
- (15) Poiseuille, J. L. M., Compt. rend. 11, 961, 104 (1840). (16) Snyder, H. B., Gilbert, E. C., Ind. Eng. Chem. 34, 1519
- (1942). (17) Stockhardt, J. S., Hull, C. M., Ibid., 23, 1438 (1931).
- (18) Timmermans, J., "Physico-Chemical Constants of Pure
- Organic Compounds," Elsevier, New York, 1950. (19) Washburn, E. W., Read, J. W., J. Am. Chem. Soc. 41, 729
- (1919). (20) Wilke, C. R., J. Chem. Phys. 18, 517 (1950).
- Received for review August 23, 1956. Accepted April 8, 1957.